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Abstract

Purpose – The objective of the present study is to investigate the effect of arbitrary magnetic
Reynolds number on steady flow of an incompressible conducting viscous liquid in
convergent-divergent channels under the influence of an externally applied homogeneous magnetic field.

Design/methodology/approach – The solution of the non-linear 2D Navier-Stokes equations
modeling the flow field is obtained using a perturbation technique coupled with a special type of
Hermite-Padé approximation method implemented numerically on MAPLE and a bifurcation study is
performed.

Findings – The results show that increasing values of magnetic Reynolds number causes a general
decrease in the fluid velocity around the central region of the channel. The flow reversal control is also
observed by increasing magnetic field intensity. The bifurcation study reveals the solution branches
and turning points.

Practical implications – The reported results are very useful in the field of engineering flow control
and industrial metal casting for the control of molten metal flows.

Originality/value – Effect of arbitrary magnetic Reynolds on the overall flow structure in
converging-diverging channels are presented and studied using a newly developed numerical
approach.

Keywords Flow, Liquid flow, Number theory, Viscosity, Inertia, Magnetism

Paper type Research paper

1. Introduction
In modern times, the theory of flow through convergent-divergent channels has many
applications in aerospace, chemical, civil, environmental, mechanical and
bio-mechanical engineering as well as in understanding rivers and canals. The
mathematical investigations of this type of problem were pioneered by Jeffery (1915)
and Hamel (1916), and have been extensively studied by several authors and discussed
in many textbooks (Fraenkel, 1962; Batchelor, 1967; Sobey and Drazin, 1986; Banks
et al., 1988; Hamadiche et al., 1994; Makinde, 1997, 1999; Khan et al., 2003; Makinde and
Mhone, 2007). Jeffery-Hamel flows are interesting models of the phenomenon of
separation of boundary layers in divergent channels. These flows have revealed a
multiplicity of solutions, richer perhaps than other similarity solutions of the
Navier-Stokes equations, no doubt because of the dependence on two non-dimensional
parameters, i.e. the flow Reynolds number and channel angular widths.
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Meanwhile, the study of electrically conducting viscous fluid flowing through
convergent-divergent channels under the influence of an external magnetic field is not
only fascinating theoretically but also finds applications in mathematical modelling of
several industrial and biological systems. A possible practical application of the theory
we envisage is in the field of industrial metal casting, the control of molten metal flows.
Another area in which the theoretical study may be of interest is in the motion of liquid
metals or alloys in the cooling systems of advanced nuclear reactors. Clearly, the
motion in the region with intersecting walls may represent a local transition between
two parallel channels with different cross-sections, a widening or a contraction of the
flow. A survey of magneto-hydrodynamics (MHD) studies in the mentioned
technological field can be found in Moreau (1990). The problem is basically an
extension of classical Jeffery-Hamel flows of ordinary fluid mechanics to MHD. In the
MHD solution, an external magnetic field acts as a control parameter for both
convergent and divergent channel flows. Here, beside the flow Reynolds number (R)
and the angle of the walls, two other non-dimensional parameters determine the
solutions, the magnetic Reynolds number (Rm), and the Hartmann number (H). Hence,
a much larger variety of solutions than in the classical problem are expected.

This paper extends the recent bifurcation study of Makinde and Mhone (2006) on
MHD Jeffery-Hamel flows to include arbitrary magnetic Reynolds number. The main
results is that for H larger than 2, the flow reversal near the walls, which is a typical
feature of the classical Jeferry-Hamel flows without magnetic field and moderately
large Reynolds number, tends to disappear. Moderate values of H ¼ 4 are sufficient to
suppress flow reversal up to R ¼ 7 for channel semi-angle as large as 458. We also
observed that turning points whose magnitude depends on various flow parameters
exist in the flow field. In Sections 2 and 3, we establish the mathematical formulation
for the problem. Computer extension of the resulting perturbation series solution and
the bifurcation study are conducted using a special type of Hermite-Pade
approximation technique in Section 4. In Section 5, we discuss the entire findings.

2. Mathematical formulation
Consider the steady 2D flow of an incompressible conducting viscous fluid from a
source or sink at the intersection between two rigid plane walls.

An external current flowing along the line where the walls meet is used to generate a
magnetic field exerting a body force that controls the flow. In the laboratory frame of
reference, it is assumed that the induced electric field is negligible, hence, the Ohm’s law
reduces to ~J ¼ sð ~q £ ~BÞ, where ~J is the current density, s the conductivity of the fluid,
~B ¼ ðBr;BuÞ the magnetic flux density, and ~q ¼ ðu; vÞ is the velocity vector with
components in the radial and tangential direction, respectively. Let (r, u) be polar coordinate
with r ¼ 0 as the sink or source,a the semi-angle and the domain of the flow is represented
by 2jaj , u , jaj. Then, the MHD governing equations in terms of the vorticity (v) and
stream-function (C) formulation with Ampere’s law are given as (Figure 1):

1

r

›ðC;vÞ

›ðu; rÞ
¼ y72vþ 7 £

1

r
ð~J £ ~BÞ

� �
; v ¼ 272C; ð1Þ

7 · ~B ¼ 0; 7 £ ~B ¼ me
~J; ð2Þ

with:
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C ¼ ^
Q

2
;

›C

›u
¼ 0; at u ¼ ^a; ð3Þ

where:

Q ¼

Z a

2a

urdu; ð4Þ

is the volumetric flow rate, me the magnetic permeability, r the fluid density, 72 ¼
›2=›r 2 þ ›=r›r þ ›2=r 2›u 2 and y is the kinematic viscosity coefficient. For
Jeffery-Hamel flow of conducting fluid, we assume a purely symmetric radial flow
(Banks et al., 1988), so that the tangential velocity v ¼ 0 and as a consequence of the mass
conservation and the non-existence of magnetic monopoles (equation (2)), we have the
stream-function given by C ¼ QG(u)/2, Br ¼ 2K/r and Bu ¼ dF/rdu, where F(u) is the
magnetic flux and K is a constant representing electric current flowing in the z direction. If
we require Q $ 0 then for a , 0 the flow is converging to a sink at r ¼ 0. The
dimensionless form of equations (1)-(3) now become:

d4G

dy 4
þ 2Ra

dG

dy

d2G

dy 2
þ ð4 2 H Þa 2 d2G

dy 2
þ 2H 2Rma 3G

dG

dy
¼ 0; ð5Þ

with:

G ¼ ^1;
dG

dy
¼ 0; at y ¼ ^1; ð6Þ

where y ¼ u/a and H ¼ 2K
ffiffiffiffiffiffiffiffiffiffiffi
s=ry

p
, R ¼ Q=2y , Rm ¼ mesQ are the Hartmann number,

the flow Reynolds number and the magnetic Reynolds number, respectively.

3. Perturbation method
The problem posed by equations (5) and (6) is non-linear, for small channel angular
width, we shall seek asymptotic expansion of the form:

Gð yÞ ¼
X1
i¼0

a iGi: ð7Þ

Substituting the above expressions (7) into equations (5) and (6) and collecting the
coefficients of like powers of a we obtained and solved the equations governing G.
Since it seems cumbersome to obtain many terms of the solution series manually, we

Figure 1.
Schematic description

of the channel

B (Uniform magnetic field) 
r
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have written a MAPLE program that calculates successively the coefficients of the
solution series. Some of the solution for stream-function and radial velocity obtained
are given as follows:

Gð y;a;R;Rm;H Þ

¼
3

2
y2

1

2
y 3 2

3

280
Ryð y 2 2 5Þð y 2 2 1Þ2a2

1

431; 200
yð y2 1Þ2ð yþ 1Þ2

� ð98R 2y 6 2 959R 2y 4 þ 2; 472y 2R 2 2 43; 120 þ 10; 780H 2 2 2; 875R 2Þa 2

þ 2
33

5; 600
yRH 2 2

41

2; 800
H 2Ry 5 þ

1

140
RmH 2y 7 þ

1

175
H 2Ry 7

�

þ
1

18
y 3RmH 2 2

3

80
RmH 2y 5 þ

11

700
y 3RH 2 2

1

1; 120
H 2Ry 9

2
83

3; 360
yRmH 2 2

1

2; 016
RmH 2y 9 þ

1

280
Ry 9 2

4

175
Ry 7 þ

41

700
Ry 5

2
1

208; 000
R 3y 15 þ

127

1; 601; 600
R 3y 13 2

603

1; 232; 000
R 3y 11 þ

31

19; 600
R 3y 9

2
184; 599

60; 368; 000
R 3y 7 þ

16; 493

4; 312; 000
R 3y 5 2

11

175
y3R2

439; 093

156; 956; 800
y 3R 3

þ
33

1; 400
yR þ

33; 897

39; 239; 200
yR 3

�
a 3 þ Oða 4Þ

ð8Þ

uð y;a;R;Rm;H Þ

¼ 2
3

2
ð y2 1Þð yþ 1Þ2

3

280
Rð y2 1Þð yþ 1Þð7y4 2 28y 2 þ 5Þa

2
1

431; 200
ð y2 1Þð yþ 1Þð1; 078y 8R 2 2 9; 317R 2y6 þ 22; 099R 2y 4

2 21; 791y2R 2 þ 53; 900y 2H 2 2 215; 600y 2 þ 43; 120 þ 2; 875R 2

2 10; 780H 2Þa 2 2
1

2; 354; 352; 000
ð y2 1Þð yþ 1Þð169; 785R 3y 12

2 2; 257; 185R 3y 10 þ 10; 418; 478R 3y 8 2 23; 095; 002R 3y 6

þ 10; 510; 500RmH 2y 6 2 75; 675; 600Ry 6 þ 18; 918; 900H 2Ry 6

þ 27; 300; 525R 3y4 2 75; 255; 180H 2Ry 4 2 107; 207; 100RmH 2y 4

þ 301; 020; 720Ry4 2 17; 725; 365y 2R 3 þ 97; 117; 020y 2RH 2

þ 334; 233; 900y 2RmH 2 2 388; 468; 080y 2R þ 2; 033; 820R 3

2 58; 158; 100RmH 2 þ 55; 495; 440R2 13; 873; 860RH 2Þa 3 þ Oða4Þ

ð9Þ

Using a computer symbolic algebra package (MAPLE), the first few terms of the
above solution series in equations (8) and (9) as well as the series for the centreline
velocity profile u(0, a, R, Rm, H) are obtained. We are aware that these power series
solutions are valid for very small parameter values. However, using Hermite-Padé
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approximation technique, we have extended the usability of the solution series beyond
small parameter values as illustrated in the following section.

4. Hermite-Padé approximation method
The main tool of this paper is a simple technique of series summation based on the
generalization of Padé approximation technique and may be described as follows. Let
us suppose that the partial sum:

UN21ðlÞ ¼
XN21

i¼0

ail
i ¼ U ðlÞ þ OðlN Þ as l! 0; ð10Þ

is given (l could be a or R). The accuracy attainable by equation (10) is often
inadequate, and, indeed, the series may diverge (Baker and Graves-Morris, 1996).
However, we are concerned with the bifurcation study by analytic continuation as well
as the dominant behaviour of the solution by using partial sum in equation (10). We
expect that the accuracy of the critical parameters will ensure the accuracy of the
solution. It is well known that the dominant behaviour of a solution of a differential
equation can often be written as Guttamann (1989):

U ðlÞ <
Pðlc 2 lÞm for m – 0; 1; 2; . . .

Pðlc 2 lÞmlnjlc 2 lj for m ¼ 0; 1; 2; . . .
as l! lc

(
; ð11Þ

where P is some constant and lc is the critical point with the exponent m. However, we
shall make the simplest hypothesis with respect to non-linear problems by assuming
that U(l) is the local representation of an algebraic function of l. Therefore, we seek an
expression of the form:

Fdðl;UN21Þ ¼ A0N ðlÞ þ Ad
1N ðlÞU

ð1Þ þ Ad
2N ðlÞU

ð2Þ þ Ad
3N ðlÞU

ð3Þ; ð12Þ

such that:

A0N ðlÞ ¼ 1; Ad
iN ðlÞ ¼

Xdþi

j¼1

bijl
j21 ð13Þ

and:

Fdðl;U Þ ¼ OðlNþ1Þ as l! 0; ð14Þ

where d $ 1, i ¼ 1, 2, 3. The asymptotic behaviour of the equation (10) with respect to
the approximant in equation (12) has been fully discussed in the earlier papers by
Sergeyev and Goodson (1998) and Tourigny and Drazin (2000). The condition (13)
normalizes the Fd and ensures that the order of series Ad

iN increases as i and d increase
in value. There are thus 3(2 þ d ) undetermined coefficients bij in the expression (13).
The requirement equation (14) reduces the problem to a system of N linear equations
for the unknown coefficients of Fd. The entries of the underlying matrix depend only on
the N given coefficients ai. Henceforth, we shall take:

N ¼ 3ð2 þ d Þ; ð15Þ
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so that the number of equations equals the number of unknowns. Equation (12) is a
new special type of Hermite-Padé approximants. Both the algebraic and differential
approximants form of equation (12) are considered. For instance, we let:

U ð1Þ ¼ U ; U ð2Þ ¼ U 2; U ð3Þ ¼ U 3; ð16Þ

and obtain a cubic Padé approximant. This enables us to obtain solution branches of
the underlying problem in addition to the one represented by the original series. In the
same manner, we let:

U ð1Þ ¼ U ; U ð2Þ ¼ DU ; U ð3Þ ¼ D 2U ð17Þ

in equation (12), where D is the differential operator given by D ¼ d/dl. This leads to a
second order differential approximants. It is an extension of the integral approximants
idea by Hunter and Baker (1979) and enables us to obtain the dominant singularity in
the flow field, i.e. by equating the coefficient A3N(l) in the equation (12) to zero.
Meanwhile, it is very important to note that the rationale for chosen the degrees of AiN

in equation (13) in this particular application is based on the simple technique of
singularity determination in second order linear ordinary differential equations with
polynomial coefficients as well as the possibility of multiple solution branches for the
non-linear problem (Vainberg and Trenogin, 1974). In practice, one usually finds that
the dominant singularities are located at zeroes of the leading polynomial Aðd Þ

3N
coefficients of the second order linear ordinary differential equation. Hence, some of the
zeroes of Aðd Þ

3N may provide approximations of the singularities of the series U and
we expect that the accuracy of the singularities will ensure the accuracy of the
approximants.

The critical exponent mN can easily be found by using Newton’s polygon algorithm.
However, it is well known that, in the case of algebraic equations, the only singularities
that are structurally stable are simple turning points. Hence, in practice, one almost
invariably obtains mN ¼ 1/2. If we assume a singularity of algebraic type as in
equation (11), then the exponent may be approximated by:

mN ¼ 1 2
A2N ðlCNÞ

DA3N ðlCNÞ
ð18Þ

For details on the above procedure, interested readers can see Vainberg and Trenogin
(1974), Makinde (2005), Makinde and Mhone (2006), etc. It is very important to note at
this junction that the solution series for the flow characteristics mentioned in Section 3
can be easily generated in powers of either a or R. Hence, with respect to the problem
under investigation, l can either be a or R as shown in the following section.

5. Results and discussion
The bifurcation procedure above is applied on the first 24 terms of the solution series
obtained in Section 3 and we obtained the results as shown in Tables I-III.

Table I shows the rapid convergence of the dominant singularity ac, i.e. the
divergent channel semi-angle at bifurcating point in the flow field for R ¼ 20.0,
Rm ¼ 0 and H ¼ 1.0 together with its corresponding critical exponent mc with gradual
increase in the number of series coefficients utilized in the approximants. Figure 2
shows the fluid radial velocity profile for divergent channels at varying semi-angles.

HFF
18,6

702



The presence of flow reversal near the channel’s wall is noticed for divergent channel
with very large semi-angle. As the divergent semi-angle decreases, a general decrease
in the fluid velocity around the centreline region of the channel is observed and the
flow reversal near the walls is suppressed. Figure 3 shows the effect of magnetic field
on the fluid radial velocity profile for a divergent channel at semi-angle a ¼ 458. It is
interesting to note that an increase in the magnetic field intensity causes a general

d N ac mc

1 9 0.26791645 0.4798161
2 12 0.26920722 0.4978656
3 15 0.26915666 0.4998759
4 18 0.26916217 0.4999999
5 21 0.26916246 0.5000000
6 24 0.26916246 0.5000000

Table I.
Computations showing

the procedure rapid
convergence for H ¼ 1.0,

R ¼ 20.0, Rm ¼ 0

H 0 1 3

Rc(Rm ¼ 0) 54.4389 54.4717 54.6651
Rc(Rm ¼ 1) 54.4389 54.4955 54.7875
Rc(Rm ¼ 2) 54.4389 54.4966 54.8029
mc 0.50000 0.50000 0.50000

Table II.
Computation showing the

divergent channel flow
critical Reynolds number
for bifurcation at a ¼ 0.1

H 0 1 2 3 4 5

ac(Rm ¼ 0) 0.267960 0.269162 0.272906 0.279878 0.290431 0.307406
ac(Rm ¼ 1) 0.267960 0.269269 0.273361 0.280866 0.293082 0.313469
ac(Rm ¼ 2) 0.267960 0.269375 0.273818 0.282075 0.295950 0.320828
mc 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000

Table III.
Computation showing the
divergent channel critical

semi-angles for
bifurcation at R ¼ 20.0

Figure 2.
Fluid radial velocity

profile for a divergent
channel at varying

semi-angles; Rm ¼ 1.0;
H ¼ 1.0; R ¼ 7.0
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decrease in the fluid velocity around the centreline region of the channel. We also
noticed that the Jeffery-Hamel flow corresponding to the case of H ¼ 0 (no magnetic
field) and shows flow reversal near both walls, i.e. internal boundary layer separation.
As the Hartmann number (H) increases the flow reversal disappear, for H ¼ 2, it has
been suppressed already. The profile becomes distinctively convex for H ¼ 4. We see
that moderate values of H are sufficient to avoid the flow reversal that is typical of
ordinary fluids in divergent channels. Figure 4 shows the effect of magnetic Reynolds
number on the fluid radial velocity profile. It is noteworthy that an increase in the
values of magnetic Reynolds causes a general decrease in the fluid velocity around the
centreline region of the channel. The case of convergent channel (i.e. a ¼ -458) is shown
in Figure 5. No reversal in the flow field near the walls occur in convergent channel,
however, an increase in the magnetic Reynolds number causes a further increase in the
fluid velocity around the channel centreline region. In Figure 6, we show a slice of the
bifurcation diagram at a ¼ 0.1. The diagram suggests that, for this value of a, there is

Figure 3.
Fluid radial velocity
profile for a divergent
channel at semi-angle
a ¼ p/4; Rm ¼ 1; R ¼ 7.0
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Figure 4.
Fluid radial velocity
profile for a divergent
channel at semi-angle
a ¼ p/4; H ¼ 3; R ¼ 7.0

Radial Velocity

2

1.5

1

0.5

–0.2–0.4–0.6–0.8–1 0.2 0.4 0.6 0.8 1
y

Notes: __________ Rm = 0; oooooooo Rm = 1.0; +++++++ Rm = 2.0

HFF
18,6

704



a turning point at Rc(H, Rm). It is interesting to note that the magnitude of Rc increases
with an increase in the values both magnetic field intensity and magnetic Reynolds
number (i.e. H, Rm) as shown in Table II. For the case of classical Jeffery-Hamel flow
(i.e. H ¼ 0), we obtained Rc(H ¼ 0) < 54.4389. This is in good agreement with
Fraenkel’s result, namely Rc(H ¼ 0) < 5.461/a as a ! 0. We remark that, as a ! 0,
the flow tends to plane Poiseuille flow. Consequently, as the flow tends to
hydromagnetic plane Poiseuille flow, we observe that turning point in the flow field
varies depending on the magnitude of magnetic field intensity (Table II). Another slice
of the bifurcation diagram at R ¼ 20 is shown in Figure 7. The diagram suggests that,
for negative values of a (i.e. convergent channel), the solution is unique. We noticed
that the solution bifurcates at ac(H, Rm) as shown in Table III. The magnitude of ac

increases with an increase in the values both magnetic field intensity and
magnetic Reynolds number. For the case of classical Jeffery-Hamel flow (i.e. H ¼ 0),

Figure 5.
Fluid radial velocity

profile for a convergent
channel at semi-angle

a ¼ -p/4; H ¼ 3; R ¼ 7.0
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we obtained ac(H ¼ 0) < 0.26796. This is in good agreement with Khan et al. (2003)
result, namely ac(R ¼ 20) < 0.27. However, we remark here that this particular result
of Khan et al. (2003) contains round up error. Finally, these bifurcation diagrams in
Figures 6 and 7 show how the flow changes and bifurcates as the angle of inclination,
the magnetic field intensity and the magnetic Reynolds number and the Reynolds
number vary. In particular, for every a, there is a critical value Rc(H, Rm) such that, for
0 # R(H, Rm) , Rc(H, Rm) there are two solutions (labelled I and II) and the solution II
diverges to infinity as R ! 0.

6. Conclusion
The influence of arbitrary magnetic Reynolds number on 2D, steady flow of an
incompressible conducting viscous liquid in convergent-divergent channels is studied
using a new perturbation series summation and improvement technique. A bifurcation
study by analytic continuation of a power series in the bifurcation parameter for a
particular solution branch is performed. The procedure reveals accurately the
analytical structure of the solution function and pertinent results for velocity field, flow
reversal control and bifurcations are discussed quantitatively.
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